Chapter 4

In this example, we defined three asynchronous tasks, where each task calls the subsequent
in the order, as shown in the following figure:

Task 1 Task 2 Task 3

v

Time

Task execution in the example
To accomplish this, we need to capture the event loop:
loop = asyncio.get event loop ()
Then, we schedule the first call to function 1 () by the call soon construct:

end loop = loop.time() + 9.0
loop.call soon(function 1, end loop, loop)

Let's note the definition of function 1:

def function 1(end time, loop) :
print ("function 1 called")
if (loop.time() + 1.0) < end time:
loop.call later(l, function 2, end time, loop)
else:
loop.stop ()

This defines the asynchronous behavior of the application with the following arguments:

» end_ time: This defines the upper time limit within function 1 and makes the call
to function_ 2 throughthe call later method

» loop: This is the loop event that was captured previously with the get _event
loop () method

Asynchronous Programming

The task of function_1 is pretty simple, which is to print its name, but it could also be more
computationally intensive:

print ("function 1 called")

After performing the task, it is compared to 1oop.time () with the total length of the run;
the total number of the cycles is 12 and if it is not passed this time, then it is executed with
the call later method with a delay of 1 second:

if (loop.time() + 1.0) < end time:
loop.call later(l, function 2, end time, loop)
else:
loop.stop ()

For funcion 2 () and function_3 (), the operation is the same.
If the running time expires, then the loop event must end:

loop.run forever ()
loop.close()

Handling coroutines with Asyncio

We saw, in the course of the various examples presented, that when a program becomes
very long and complex, it is convenient to divide it into subroutines, each of which realizes a
specific task for which it implements a suitable algorithm. The subroutine cannot be executed
independently, but only at the request of the main program, which is then responsible for
coordinating the use of subroutines. Coroutines are a generalization of the subroutine. Like a
subroutine, the coroutine computes a single computational step, but unlike subroutines, there
is no main program that can be used to coordinate the results. This is because the coroutines
link themselves together to form a pipeline without any supervising function responsible for
calling them in a particular order. In a coroutine, the execution point can be suspended and
resumed later after keeping track of its local state in the intervening time. Having a pool of
coroutines, it is possible to interleave their computations: run the first one until it yields the
control back, then run the second, and so on down the line.

The control component of the interleave is the even loop, which was explained in the previous
recipe. It keeps track of all the coroutines and schedules when they will be executed.

The other important aspects of coroutines are, as follows:

» Coroutines allow multiple entry points that can be yielded multiple times

» Coroutines can transfer the execution to any other coroutines

138

Chapter 4

The term "yield" is used to describe a coroutine that pauses and passes the control flow to
another coroutine. Since coroutines can pass values along with the control flow to another
coroutine, the phrase "yielding a value" is used to describe the yielding and passing of a value
to the coroutine that receives the control.

Getting ready

To define a coroutine with the Asyncio module, we simply use an annotation:

import asyncio

@asyncio.coroutine

def coroutine_function(function_ arguments)
DO_SOMETHING

How to do it...

In this example, we will see how to use the coroutine mechanism of Asyncio to simulate
a finite state machine of five states. A finite state machine or automaton (FSA) is a
mathematical model that is widely used not only in engineering disciplines, but also in
sciences, such as mathematics and computer science. The automata through which we
want to simulate the behavior is as follows:

Finite state machine

Asynchronous Programming

In the preceding diagram, we have indicated with S0, S1, §2, §3, and S$4 the states of the
system. Here, 0 and 1 are the values for which the automata can pass from one state to the
next (this operation is called a transition). So for example, the state S0 can be passed to the
state S1 only for the value 1 and S0 can be passed to the state $2 only for the value 0. The
Python code that follows, simulates a transition of the automaton from the state S$0, the so-
called Start State, up to the state S$4, the End State:

#Asyncio Finite State Machine

import asyncio
import time
from random import randint

@asyncio.coroutine
def StartState() :
print ("Start State called \n")
input value = randint (0,1)
time.sleep(1)
if (input_value == 0):
result = yield from State2 (input value)
else
result = yield from Statel (input_ value)
print ("Resume of the Transition : \nStart State calling "\
+ result)

@asyncio.coroutine
def Statel(transition value) :

outputValue = str(("State 1 with transition value = %s \n"\
% (transition value)))
input value = randint (0,1)
time.sleep(1)
print("...Evaluating...")
if (input_value == 0):
result = vyield from State3 (input value)
else

result = yield from State2 (input value)
result = "State 1 calling " + result
return (outputValue + str(result))

@asyncio.coroutine
def State2(transition value) :

140

Chapter 4

outputValue = str(("State 2 with transition value = %s \n" \
% (transition value)))

input value = randint (0,1)

time.sleep(1)

print("...Evaluating...")

if (input value == 0):

result = yield from Statel (input value)
else

result = yield from State3 (input value)
result = "State 2 calling " + result
return (outputValue + str(result))

@asyncio.coroutine
def State3(transition value):
outputValue = str(("State 3 with transition value = %s \n" \
% (transition value)))
input value = randint (0,1)
time.sleep(1)
print("...Evaluating...")
if (input value == 0):
result = yield from Statel (input value)
else
result = yield from EndState (input value)
result = "State 3 calling " + result
return (outputValue + str(result))

@asyncio.coroutine
def EndState(transition value) :
outputValue = str(("End State with transition value = %s \n"\
% (transition value)))
print("...Stop Computation...")
return (outputValue)

if name == " main ":
print ("Finite State Machine simulation with Asyncio Coroutine")
loop = asyncio.get event loop()
loop.run until complete(StartState())

After running the code, we have an output similar to this:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python asyncio state machine.py

fiat—

Asynchronous Programming

Finite State Machine simulation with Asyncio Coroutine

Start State called
.Evaluating. ..
.Evaluating. ..
.Evaluating...
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating...
.Evaluating. ..
.Evaluating. ..
.Evaluating...
.Stop Computation...

Resume of the Transition

Start State calling State 1 with transition value =1
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 1 with transition value = 0
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling End State with transition value = 1

Each state of the automata has been defined with the following annotation:
@asyncio.coroutine
For example, the state S0 is defined as:

@asyncio.coroutine

def StartState() :
print ("Start State called \n")
input value = randint (0,1)

142

Chapter 4

time.sleep(1)
if (input value == 0):

result = yield from State2 (input value)
else

result = yield from Statel (input value)

The transition to the next state is determined by input _value, which is defined by the
randint (0,1) function of Python's module random. This function provides randomly the
value O or 1. In this manner, it randomly determines to which state the finite state machine
will be passed:

input value = randint(0,1)

After determining the value at which state the finite state machine will be passed, the
coroutine calls the next coroutine using the command yield from:

if (input value == 0):
result = yield from State2 (input value)
else
result = yield from Statel (input value)

The variable result is the value that each coroutine returns. It is a string, and by the end of the
computation, we can reconstruct the transition from the initial state of the automation, the
Start State, up to the final state, the End State.

The main program starts the evaluation inside the event loop as:

if name == " main ":
print ("Finite State Machine simulation with Asyncio Coroutine")
loop = asyncio.get event loop ()
loop.run until complete (StartState())

Task manipulation with Asyncio

Asyncio is designed to handle asynchronous processes and concurrent task executions on an
event loop. It also provides us with the asyncio.Task () class for the purpose of wrapping
coroutines in a task. Its use is to allow independently running tasks to run concurrently with
other tasks on the same event loop. When a coroutine is wrapped in a task, it connects the
task to the event loop and then runs automatically when the loop is started, thus providing a
mechanism to automatically drive the coroutine.

